Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38067256

RESUMO

The epithelial-mesenchymal transition (EMT) is a process in which epithelial cells acquire the ability to actively migrate via a change to the mesenchymal phenotype. This mechanism occurs in an environment rich in cytokines and reactive oxygen species but poor in nutrients. The aim of this study was to demonstrate that the use of a fullerene C60 nanofilm can inhibit liver cancer cell invasion by restoring their non-aggressive, epithelial phenotype. We employed epithelial and mesenchymal HepG2 and SNU-449 liver cancer cells and non-cancerous mesenchymal HFF2 cells in this work. We used enzyme-linked immunosorbent assays (ELISAs) to determine the content of glutathione and transforming growth factor (TGF) in cells. We measured the total antioxidant capacity with a commercially available kit. We assessed cell invasion based on changes in morphology, the scratch test and the Boyden chamber invasion. In addition, we measured the effect of C60 nanofilm on restoring the epithelial phenotype at the protein level with protein membranes, Western blotting and mass spectrometry. C60 nanofilm downregulated TGF and increased glutathione expression in SNU-449 cells. When grown on C60 nanofilm, invasive cells showed enhanced intercellular connectivity; reduced three-dimensional invasion; and reduced the expression of key invasion markers, namely MMP-1, MMP-9, TIMP-1, TIMP-2 and TIMP-4. Mass spectrometry showed that among the 96 altered proteins in HepG2 cells grown on C60 nanofilm, 41 proteins are involved in EMT and EMT-modulating processes such as autophagy, inflammation and oxidative stress. The C60 nanofilm inhibited autophagy, showed antioxidant and anti-inflammatory properties, increased glucose transport and regulated the ß-catenin/keratin/Smad4/snail+slug and MMP signalling pathways. In conclusion, the C60 nanofilm induces a hybrid mesenchymal-epithelial phenotype and could be used in the prevention of postoperative recurrences.

2.
Nanotechnol Sci Appl ; 16: 41-57, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38111798

RESUMO

Introduction: Disorganisation of the extracellular matrix (ECM) is strongly connected to tumor progression. Even small-scale changes can significantly influence the adhesion and proliferation of cancer cells. Therefore, the use of biocompatible nanomaterials capable of supporting and partially replenishing degraded ECM might be essential to recover the niche after tumor resection. The objective of this study was to evaluate the influence of graphene, graphene oxide, fullerene, and diamond nanofilms on breast cancer and glioblastoma grade IV cell lines. Methods: Nanomaterials were characterized using SEM and TEM techniques; zeta potential analysis was also performed. Nanofilms of graphene, fullerene, and diamond nanoparticles were also characterized using AFM. The toxicity was tested on breast cancer MDA.MB.231 and glioblastoma grade IV U-87 MG cell lines, using LDH assay and by counting stained dead cells in bioprinted 3D models. The following parameters were analyzed: proliferation, adhesion to the nanofilm, and adhesion to particular ECM components covered with diamond nanoparticles. Results and Discussion: Our studies demonstrated that nanofilms of graphene and diamond nanoparticles are characterized by cell-specific toxicity. Those nanomaterials were non-toxic to MDA.MB.231 cells. After applying bioprinted 3D models, diamond nanoparticles were not toxic for both cell lines. Nanofilms made of diamond nanoparticles and graphene inhibit the proliferation of MDA.MB.231 cells after 48 and 72 hours. Increased adhesion on nanofilm made of diamond nanoparticles was only observed for MDA.MB.231 cells after 30 and 60 minutes from seeding the cells. However, analysis of adhesion to certain ECM components coated with diamond nanoparticles revealed enhanced adhesion to tenascin and vitronectin for both tested cell lines. Conclusion: Our studies show that nanofilm made of diamond nanoparticles is a non-toxic and pro-adhesive nanomaterial that might stabilize and partially replenish the niche after breast tumor resection as it enhances the adhesion of breast cancer cells and inhibits their proliferation.

3.
J Inflamm Res ; 16: 3739-3761, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37663761

RESUMO

Background: The various growth factors change the phenotype of neoplastic cells from sedentary (epithelial) to invasive (mesenchymal), which weaken intercellular connections and promote chemotaxis. It can be assumed that the use of anti-inflammatory polyhydroxyfull nanofilms will restore the sedentary phenotype of neoplastic cells in the primary site of the tumor and, consequently, increase the effectiveness of the therapy. Methods: The studies were carried out on liver cancer cells HepG2, C3A and SNU-449, and non-cancer hepatic cell line THLE-3. Transforming growth factor (TGF), epidermal growth factor and tumor necrosis factor were used to induce the epithelial-mesenchymal transition. C60(OH)40 nanofilm was used to induce the mesenchymal-epithelial transition. Obtaining an invasive phenotype was confirmed on the basis of changes in the morphology using inverted light microscopy. RT-PCR was used to confirm mesenchymal or epithelial phenotype based on e-cadherin, snail, vimentin expression or others. Water colloids at a concentration of 100 mg/L were used to create nanofilms of fullerene, fullerenol, diamond and graphene oxide. The ELISA test for the determination of TGF expression and growth factor antibody array were used to select the most anti-inflammatory carbon nanofilm. Mitochondrial activity and proliferation of cells were measured by XTT and BrdU tests. Results: Cells lost their natural morphology of cells growing in clusters and resembled fibroblast cells after adding a cocktail of factors. Among the four allotropic forms of carbon tested, only the C60(OH)40 nanofilm inhibited the secretion of TGF in all the cell lines used and inhibited the secretion of other factors, including insulin-like growth factor system. Nanofilm C60(OH)40 was non-toxic to liver cells and inhibited the TGF-ß1/Smad pathway of invasive cells treated with the growth factor cocktail. Conclusion: The introduction of an anti-inflammatory, nontoxic component that can induce the mesenchymal-epithelial transition of cancer cells may represent a future adjuvant therapy after tumor resection.

4.
Int J Nanomedicine ; 18: 4839-4855, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662685

RESUMO

Introduction: Graphene oxide (GO) is a single layer of carbon atoms with unique properties, which are beneficial due to its surface functionalisation by miRNA. miRNAs are a non-coding small form of RNA that suppress the expression of protein-coding genes by translational repression or degradation of messenger RNA. Antisense miRNA-21 is very promising for future investigation in cancer therapy. This study aimed to detect cytokine expression levels after the administration of GO-antisense miRNA-21 into U87, U118, U251 and T98 glioma cell lines. Methods: U87, U118, U251 and T98 glioma cell line were investigated in term of viability, human cytokine expression level at protein and genes after treatment with GO, GO-antisense miRNA-21 and antisense miRNA-21. The delivery of antisense miRNA-21 into the glioma cell at in vitro investigation were conducted by GO based transfection and electroporation. Results: The results of the protein microarray and gene expression profile showed that complexes of GO-antisense miRNA-21 modified the metallopeptidase inhibitor 2 (TIMP-2), interleukin-6 (IL-6), interleukin 8 (IL-8), intercellular adhesion molecule 1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) expression level compared to transfection by electroporation of antisense miRNA-21 at investigated glioblastoma cell lines. The TIMP-2 protein and gene expression level was upregulated after antisense miRNA-21 delivery by GO complex into U87, U251 and T98 glioblastoma cell lines comparing to the non-treated control group. The downregulation at protein expression level of ICAM - 1 was observed at U87, U118, U251 and T98 glioma cell lines. Moreover, the IL-8 expression level at mRNA for genes and protein was decreased significantly after delivery the antisense-miRNA-21 by GO compared to electroporation as a transfection method. Discussion: This work demonstrated that the graphene oxide complexes with antisense miRNA-21 can effectively modulate the cytokine mRNA and protein expression level at U87, U118, U251 and T98 glioma cell lines.


Assuntos
Glioblastoma , Glioma , MicroRNAs , Humanos , Citocinas/genética , Glioblastoma/genética , Glioblastoma/terapia , Interleucina-8/genética , Inibidor Tecidual de Metaloproteinase-2 , Linhagem Celular , MicroRNAs/genética
5.
Nanotoxicology ; 17(4): 310-337, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37262345

RESUMO

Reports on the cytotoxicity of diamond nanoparticles (ND) are ambiguous and depend on the physicochemical properties of the material and the tested cell lines. Thus, the aim of this research was to evaluate the influence of thirteen types of diamond nanoparticles, differing in production method, size, and surface functional groups, on their cytotoxicity against four tumor cell lines (T98G, U-118 MG, MCF-7, and Hep G2) and one non-tumor cell line (HFF-1). In order to understand the dependence of diamond nanoparticles on physicochemical properties, the following parameters were analyzed: viability, cell membrane damage, morphology, and the level of intracellular general ROS and mitochondrial superoxide. The performed analyses revealed that all diamond nanoparticles showed no toxicity to MCF-7, Hep G2, and HFF-1 cells. In contrast, the same nanomaterials were moderately toxic for the glioblastoma T98G and U-118 MG cell lines. In general, the effect of the production method did not influence ND toxicity. Some changes in cell response after treatment with modified nanomaterials were observed, with the presence of carboxyl groups having a more detrimental effect than the presence of other functional groups. Although nanoparticles of different sizes caused similar toxicity, nanomaterials with bigger particles caused a more pronounced effect.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Glioblastoma , Neoplasias Hepáticas , Nanopartículas , Humanos , Feminino , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Glioblastoma/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Nanopartículas/toxicidade , Nanopartículas/química , Linhagem Celular Tumoral , Sobrevivência Celular
6.
Nanotechnol Sci Appl ; 16: 1-18, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36699443

RESUMO

Aim: The experiments aimed to document the presence of the ACE2 receptor on human muscle cells and the effects of the interaction of these cells with the spike protein of the SARS-CoV-2 virus in terms of induction of pro-inflammatory proteins, as well as to assess the possibility of reducing the pool of these proteins with the use of graphene oxide (GO) flakes. Methods: Human Skeletal Myoblast (HSkM), purchased from Gibco were maintained in standard condition according to the manufacturer's instruction. The cells were divided into 4 groups; 1. C-control, 2. S-with addition of spike protein, 3. GO-with the addition of graphene oxide, 4. GO-S-with addition of GO followed by the addition of S protein. Protein S (PX-COV-P049) was purchased from ProteoGenix (France). GO was obtained from Advanced Graphene Products (Zielona Gora, Poland). The influence of all the factors on the morphology of cells was investigated using light and confocal microscopy. ACE2 protein expression on muscle cells was visualized and 40 pro-inflammatory cytokines were investigated using the membrane antibody array method. The protein profile of the lysate of cells from individual groups was also analyzed by mass spectrometry. Conclusion: The experiments confirmed the presence of the ACE2 receptor in human skeletal muscle cells. It has also been documented that the SARS-CoV-2 virus spike protein influences the activation of selected pro-inflammatory proteins that promote cytokine storm and oxidative stress in muscle cells. The use of low levels of graphene oxide does not adversely affect muscle cells, reducing the levels of most proteins, including pro-inflammatory proteins. It can be assumed that GO may support anti-inflammatory therapy in muscles by scavenging proteins that activate cytokine storm.

7.
Biosens Bioelectron ; 217: 114718, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174357

RESUMO

Monitoring cell adhesion and growth are crucial for various applications involving drug screening, cytotoxicity, and cytocompatibility studies. However, acquiring accurate information about the growing state and responsiveness to a treatment of a cell system in a real-time and label-free manner is still a challenge. This work presents the first research on direct, real-time, and label-free adherent cell culture monitoring using a microcavity in-line Mach-Zehnder interferometer (µIMZI) fabricated in an optical fiber. The sensing solution based on µIMZI offers a great advantage over many other monitoring concepts tracking the changes taking place on the microcavity's bottom surface and within its volume, thus offering a greater penetration depth. In this study, we verified performance of the approach using a non-cancer bone marrow stromal cell line HS-5. The results demonstrate that the changes of the acquired signal are closely related to the different states of cells' adhesion, proliferation, morphology, and variation of mass. Thus, this label-free, real-time µIMZI-based monitoring technique gives a great promise to the analysis or monitoring of relevant new treatments in future scientific, as well as clinical applications.


Assuntos
Técnicas Biossensoriais , Fibras Ópticas , Técnicas de Cultura de Células , Interferometria/métodos
8.
Materials (Basel) ; 15(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36079225

RESUMO

Aggressive invasiveness is a common feature of malignant gliomas, despite their high level of tumor heterogeneity and possible diverse cell origins. Therefore, it is important to explore new therapeutic methods. In this study, we evaluated and compared the effects of graphene (GN) and reduced graphene oxides (rGOs) on a highly invasive and neoplastic cell line, U87. The surface functional groups of the GN and rGO flakes were characterized by X-ray photoelectron spectroscopy. The antitumor activity of these flakes was obtained by using the neutral red assay and their anti-migratory activity was determined using the wound healing assay. Further, we investigated the mRNA and protein expression levels of important cell adhesion molecules involved in migration and invasiveness. The rGO flakes, particularly rGO/ATS and rGO/TUD, were found highly toxic. The migration potential of both U87 and Hs5 cells decreased, especially after rGO/TUD treatment. A post-treatment decrease in mobility and FAK expression was observed in U87 cells treated with rGO/ATS and rGO/TUD flakes. The rGO/TUD treatment also reduced ß-catenin expression in U87 cells. Our results suggest that rGO flakes reduce the migration and invasiveness of U87 tumor cells and can, thus, be used as potential antitumor agents.

9.
Pharmaceutics ; 14(7)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35890292

RESUMO

Silver nanoparticles (AgNP) can migrate to tissues and cells of the body, as well as to agglomerate, which reduces the effectiveness of their use for the antimicrobial protection of the skin. Graphene oxide (GO), with a super-thin flake structure, can be a carrier of AgNP that stabilizes their movement without inhibiting their antibacterial properties. Considering that the human skin is often the first contact with antimicrobial agent, the aim of the study was to assess whether the application of the complex of AgNP and GO is biocompatible with the skin model in in vitro studies. The conducted tests were performed in accordance with the criteria set in OECD TG439. AgNP-GO complex did not influence the genotoxicity and metabolism of the tissue. Furthermore, the complex reduced the pro-inflammatory properties of AgNP by reducing expression of IP-10 (interferon gamma-induced protein 10), IL-3 (interleukin 3), and IL-4 (interleukin 4) as well as MIP1ß (macrophage inflammatory protein 1ß) expressed in the GO group. Moreover, it showed a positive effect on the micro- and ultra-structure of the skin model. In conclusion, the synergistic effect of AgNP and GO as a complex can activate the process of epidermis renewal, which makes it suitable for use as a material for skin contact.

10.
Animals (Basel) ; 11(12)2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34944245

RESUMO

The effects of CEME and it complex with GO injected in ovo on the growth and development of chicken embryo hindlimb muscle were investigated. First, the preliminary in vitro study on primary muscle precursor cell culture obtained from a nine-day-old chicken embryo was performed to assess toxicity (MTT assay) of CEME, GO (100 ppm) and it complex with different concentrations (1, 2, 5, and 10 wt.%). The effect on cell proliferation was investigated by BrdU assay. CEME at concentrations 1-5% increased cell proliferation, but not the complex with GO. In vitro cytotoxicity was highest in 10% and GO groups. Next, the main experiment with chicken embryos was performed with CEME, GO and it complex injected in ovo on day one of embryogenesis. On day 20 of embryogenesis survival, morphological development, histological structure of the muscle, and biochemical parameters of blood serum of the embryos were measured. No negative effect on mortality, body weight, or biochemistry of blood after use of CEME or GO-CEME complexes was observed. Interestingly, the slight toxicity of GO, observed in in vitro studies, was not observed in vivo. The use of CEME at the levels of 2% and 5% improved the structure of the lower limb muscle by increasing the number of cells, and the administration of 2% CEME increased the number of nuclei visible in the stained cross-section of the muscle. The complex GO-CEME did not further improve the muscle structure. The results indicate that CEME can be applied as an in ovo enhancer of muscle development in broilers.

11.
Int J Mol Sci ; 22(22)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34829982

RESUMO

Pancreatic cancer, due to its asymptomatic development and drug-resistance, is difficult to cure. As many metallic and carbon-based nanomaterials have shown anticancer properties, we decided to investigate their potential use as anticancer agents against human pancreatic adenocarcinoma. The objective of the study was to evaluate the toxic properties of the following nanomaterials: silver (Ag), gold (Au), platinum (Pt), graphene oxide (GO), diamond (ND), and fullerenol (C60(OH)40) against the cell lines BxPC-3, AsPC-1, HFFF-2, and HS-5. The potential cytotoxic properties were evaluated by the assessment of the cell morphology, cell viability, and cell membrane damage. The cancer cell responses to GO and ND were analysed by determination of changes in the levels of 40 different pro-inflammatory proteins. Our studies revealed that the highest cytotoxicity was obtained after the ND treatment. Moreover, BxPC-3 cells were more sensitive to ND than AsPC-1 cells due to the ND-induced ROS production. Furthermore, in both of the cancer cell lines, ND caused an increased level of IL-8 and a decreased level of TIMP-2, whereas GO caused only decreased levels of TIMP-2 and ICAM-1 proteins. This work provides important data on the toxicity of various nanoparticles against pancreatic adenocarcinoma cell lines.


Assuntos
Antineoplásicos/farmacologia , Nanoestruturas/química , Proteínas de Neoplasias/genética , Neoplasias Pancreáticas/tratamento farmacológico , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Diamante/química , Diamante/farmacologia , Fulerenos/química , Fulerenos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Grafite/química , Grafite/farmacologia , Humanos , Nanoestruturas/uso terapêutico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Platina/química , Platina/farmacologia , Prata/química , Prata/farmacologia
12.
Molecules ; 26(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34641347

RESUMO

Glioblastoma (GBM) is the most common primary and aggressive tumour in brain cancer. Novel therapies, despite achievements in chemotherapy, radiation and surgical techniques, are needed to improve the treatment of GBM tumours and extend patients' survival. Gene delivery therapy mostly uses the viral vector, which causes serious adverse events in gene therapy. Graphene-based complexes can reduce the potential side effect of viral carries, with high efficiency of microRNA (miRNA) or antisense miRNA delivery to GBM cells. The objective of this study was to use graphene-based complexes to induce deregulation of miRNA level in GBM cancer cells and to regulate the selected gene expression involved in apoptosis. The complexes were characterised by Fourier transform infrared spectroscopy (FTIR), scanning transmission electron microscopy and zeta potential. The efficiency of miRNA delivery to the cancer cells was analysed by flow cytometry. The effect of the anticancer activity of graphene-based complexes functionalised by the miRNA sequence was analysed using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxyanilide salt (XTT) assays at the gene expression level. The results partly explain the mechanisms of miRNA deregulation stress, which is affected by graphene-based complexes together with the forced transport of mimic miR-124, miR-137 and antisense miR-21, -221 and -222 as an anticancer supportive therapy.


Assuntos
Neoplasias Encefálicas/terapia , Glioblastoma/terapia , Grafite/química , MicroRNAs/antagonistas & inibidores , RNA Antissenso/administração & dosagem , RNA Antissenso/química , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Sobrevivência Celular , Sistemas de Liberação de Medicamentos , Glioblastoma/genética , Glioblastoma/patologia , Humanos , MicroRNAs/administração & dosagem , Células Tumorais Cultivadas
13.
Nanotechnol Sci Appl ; 14: 115-137, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34511890

RESUMO

PURPOSE: Surgical resection of hepatocellular carcinoma can be associated with recurrence resulting from the degeneration of residual volume of the liver. The objective was to assess the possibility of using a biocompatible nanofilm, made of a colloid of diamond nanoparticles (nfND), to fill the side after tumour resection and optimize its contact with proliferating liver cells, minimizing their cancerous transformation. METHODS: HepG2 and C3A liver cancer cells and HS-5 non-cancer cells were used. An aqueous colloid of diamond nanoparticles, which covered the cell culture plate, was used to create the nanofilm. The roughness of the resulting nanofilm was measured by atomic force microscopy. Mitochondrial activity and cell proliferation were measured by XTT and BrdU assays. Cell morphology and a scratch test were used to evaluate the invasiveness of cells. Flow cytometry determined the number of cells within the cell cycle. Protein expression in was measured by mass spectrometry. RESULTS: The nfND created a surface with increased roughness and exposed oxygen groups compared with a standard plate. All cell lines were prone to settling on the nanofilm, but cancer cells formed more relaxed clusters. The surface compatibility was dependent on the cell type and decreased in the order C3A >HepG2 >HS-5. The invasion was reduced in cancer lines with the greatest effect on the C3A line, reducing proliferation and increasing the G2/M cell population. Among the proteins with altered expression, membrane and nuclear proteins dominated. CONCLUSION: In vitro studies demonstrated the antiproliferative properties of nfND against C3A liver cancer cells. At the same time, the need to personalize potential therapy was indicated due to the differential protein synthetic responses in C3A vs HepG2 cells. We documented that nfND is a source of signals capable of normalizing the expression of many intracellular proteins involved in the transformation to non-cancerous cells.

14.
Materials (Basel) ; 14(15)2021 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34361444

RESUMO

There are numerous applications of graphene in biomedicine and they can be classified into several main areas: delivery systems, sensors, tissue engineering and biological agents. The growing biomedical field of applications of graphene and its derivates raises questions regarding their toxicity. We will demonstrate an analysis of the toxicity of two forms of graphene using four various biological models: zebrafish (Danio rerio) embryo, duckweed (Lemna minor), human HS-5 cells and bacteria (Staphylococcus aureus). The toxicity of pristine graphene (PG) and graphene oxide (GO) was tested at concentrations of 5, 10, 20, 50 and 100 µg/mL. Higher toxicity was noted after administration of high doses of PG and GO in all tested biological models. Hydrophilic GO shows greater toxicity to biological models living in the entire volume of the culture medium (zebrafish, duckweed, S. aureus). PG showed the highest toxicity to adherent cells growing on the bottom of the culture plates-human HS-5 cells. The differences in toxicity between the tested graphene materials result from their physicochemical properties and the model used. Dose-dependent toxicity has been demonstrated with both forms of graphene.

15.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33419226

RESUMO

The development of nanotechnology based on graphene and its derivatives has aroused great scientific interest because of their unusual properties. Graphene (GN) and its derivatives, such as reduced graphene oxide (rGO), exhibit antitumor effects on glioblastoma multiforme (GBM) cells in vitro. The antitumor activity of rGO with different contents of oxygen-containing functional groups and GN was compared. Using FTIR (fourier transform infrared) analysis, the content of individual functional groups (GN/exfoliation (ExF), rGO/thermal (Term), rGO/ammonium thiosulphate (ATS), and rGO/ thiourea dioxide (TUD)) was determined. Cell membrane damage, as well as changes in the cell membrane potential, was analyzed. Additionally, the gene expression of voltage-dependent ion channels (clcn3, clcn6, cacna1b, cacna1d, nalcn, kcne4, kcnj10, and kcnb1) and extracellular receptors was determined. A reduction in the potential of the U87 glioma cell membrane was observed after treatment with rGO/ATS and rGO/TUD flakes. Moreover, it was also demonstrated that major changes in the expression of voltage-dependent ion channel genes were observed in clcn3, nalcn, and kcne4 after treatment with rGO/ATS and rGO/TUD flakes. Furthermore, the GN/ExF, rGO/ATS, and rGO/TUD flakes significantly reduced the expression of extracellular receptors (uPar, CD105) in U87 glioblastoma cells. In conclusion, the cytotoxic mechanism of rGO flakes may depend on the presence and types of oxygen-containing functional groups, which are more abundant in rGO compared to GN.


Assuntos
Canais de Cloreto/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Grafite/farmacologia , Canais Iônicos/genética , Proteínas de Membrana/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Receptores de Superfície Celular/genética , Linhagem Celular Tumoral , Células , Canais de Cloreto/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Grafite/química , Humanos , Canais Iônicos/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Varredura , Oxirredução , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Superfície Celular/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Int J Mol Sci ; 21(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545308

RESUMO

The physiological process of muscle regeneration is quite limited due to low satellite cell quantity and also the inability to regenerate and reconstruct niche tissue. The purpose of the study was to examine whether a graphene oxide scaffold is able to stimulate myogenic progenitor cell proliferation and the endocrine functions of differentiating cells, and therefore, their active participation in the construction of muscle tissue. Studies were carried out using mesenchymal cells taken from 6-day-old chicken embryos and human umbilical vein endothelial cells (HUVEC) were used to assess angiogenesis. The graphene scaffold was readily colonized by myogenic progenitor cells and the cells dissected from heart, brain, eye, and blood vessels did not avoid the scaffold. The scaffold strongly induced myogenic progenitor cell signaling pathways and simultaneously activated proangiogenic signaling pathways via exocrine vascular endothelial growth factor (VEGF) secretion. The present study revealed that the graphene oxide (GO) scaffold initiates the processes of muscle cell differentiation due to mechanical interaction with myogenic progenitor cell.


Assuntos
Grafite/farmacologia , Células-Tronco Mesenquimais/citologia , Neovascularização Fisiológica/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Embrião de Galinha , Membrana Corioalantoide/citologia , Expressão Gênica , Grafite/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Microscopia de Força Atômica , Proteína MyoD/genética , Tecidos Suporte , Fator A de Crescimento do Endotélio Vascular/metabolismo
17.
J Nanobiotechnology ; 18(1): 76, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32414365

RESUMO

BACKGROUND: Formation of muscular pseudo-tissue depends on muscle precursor cells, the extracellular matrix (ECM)-mimicking structure and factors stimulating cell differentiation. These three things cooperate and can create a tissue-like structure, however, their interrelationships are relatively unknown. The objective was to study the interaction between surface properties, culture medium composition and heterogeneous cell culture. We would like to demonstrate that changing the surface properties by coating with graphene oxide nanofilm (nGO) can affect cell behaviour and especially their need for the key amino acid L-glutamine (L-Glu). RESULTS: Chicken embryo muscle cells and their precursors, cultured in vitro, were used as the experimental model. The mesenchymal stem cell, collected from the hind limb of the chicken embryo at day 8 were divided into 4 groups; the control group and groups treated with nGO, L-Glu and nGO supplied with L-Glu (nGOxL-Glu). The roughness of the surface of the plastic plate covered with nGO was much lower than a standard plate. The test of nGO biocompatibility demonstrated that the cells were willing to settle on the nGO without any toxic effects. Moreover, nGO by increasing hydrophilicity and reducing roughness and presumably through chemical bonds available on the GO surface stimulated the colonisation of primary stromal cells that promote embryonic satellite cells. The viability significantly increased in cells cultured on nGOxL-Glu. Observations of cell morphology showed that the most mature state of myogenesis was characteristic for the group nGOxL-Glu. This result was confirmed by increasing the expression of MYF5 genes at mRNA and protein levels. nGO also increased the expression of MYF5 and also very strongly the expression of PAX7 at mRNA and protein levels. However, when analysing the expression of PAX7, a positive link was observed between the nGO surface and the addition of L-Glu. CONCLUSIONS: The use of nGO and L-Glu supplement may improve myogenesis and also the myogenic potential of myocytes and their precursors by promoting the formation of satellite cells. Studies have, for the first time, demonstrated positive cooperation between surface properties nGO and L-Glu supplementation to the culture medium regarding the myogenic potential of cells involved in muscle formation.


Assuntos
Glutamina , Grafite , Desenvolvimento Muscular/efeitos dos fármacos , Nanoestruturas/química , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Embrião de Galinha , Glutamina/química , Glutamina/farmacologia , Grafite/química , Grafite/farmacologia , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo
18.
Molecules ; 25(8)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32340398

RESUMO

Finding an effective muscle regeneration technique is a priority for regenerative medicine. It is known that the key factors determining tissue formation include cells, capable of proliferating and/or differentiating, a niche (surface) allowing their colonization and growth factors. The interaction between these factors, especially between the surface of the artificial niche and growth factors, is not entirely clear. Moreover, it seems that the use of a complex of complementary growth factors instead of a few strictly defined ones could increase the effectiveness of tissue maturation, including muscle tissue. In this study, we evaluated whether graphene oxide (GO) nanofilm, chicken embryo muscle extract (CEME), and GO combined with CEME would affect the differentiation and functional maturation of muscle precursor cells, as well as the ability to spontaneously contract a pseudo-tissue muscle. CEME was extracted on day 18 of embryogenesis. Muscle cells obtained from an 8-day-old chicken embryo limb bud were treated with GO and CEME. Cell morphology and differentiation were observed using different microscopy methods. Cytotoxicity and viability of cells were measured by lactate dehydrogenase and Vybrant Cell Proliferation assays. Gene expression of myogenic regulatory genes was measured by Real-Time PCR. Our results demonstrate that CEME, independent of the culture surface, was the main factor influencing the intense differentiation of muscle progenitor cells. The present results, for the first time, clearly demonstrated that the cultured tissue-like structure was capable of inducing contractions without externally applied impulses. It has been indicated that a small amount of CEME in media (about 1%) allows the culture of pseudo-tissue muscle capable of spontaneous contraction. The study showed that the graphene oxide may be used as a niche for differentiating muscle cells, but the decisive influence on the maturation of muscle tissue, especially muscle contractions, depends on the complexity of the applied growth factors.


Assuntos
Produtos Biológicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Grafite/química , Contração Muscular/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Nanoestruturas/química , Animais , Embrião de Galinha , Expressão Gênica , Grafite/farmacologia , Microscopia de Força Atômica , Nanoestruturas/ultraestrutura
19.
Materials (Basel) ; 12(24)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835701

RESUMO

Carbon nanostructures have recently gained significant interest from scientists due to their unique physicochemical properties and low toxicity. They can accumulate in the liver, which is the main expression site of cytochrome P450 (CYP450) enzymes. These enzymes play an important role in the metabolism of exogenous compounds, such as drugs and xenobiotics. Altered activity or expression of CYP450 enzymes may lead to adverse drug effects and toxicity. The objective of this study was to evaluate the influence of three carbon nanostructures on the activity and expression at the mRNA and protein levels of CYP2C9 isoenzyme from the CYP2C subfamily: Diamond nanoparticles, graphite nanoparticles, and graphene oxide platelets. The experiments were conducted using two in vitro models. A microsome model was used to assess the influence of the three-carbon nanostructures on the activity of the CYP2C9 isoenzyme. The CYP2C9 gene expression at the mRNA and protein levels was determined using a hepatoma-derived cell line HepG2. The experiments have shown that all examined nanostructures inhibit the enzymatic activity of the studied isoenzymes. Moreover, a decrease in the expression at the mRNA and protein levels was also observed. This indicates that despite low toxicity, the nanostructures can alter the enzymatic function of CYP450 enzymes, and the molecular pathways involved in their expression.

20.
Materials (Basel) ; 13(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878020

RESUMO

Despite advanced techniques in medicine, breast cancer caused the deaths of 627,000 women in 2018. Melittin, the main component of bee venom, has lytic properties for many types of cells, including cancer cells. To increase its toxic effect, carbon nanoparticles, graphene oxide, pristine graphene, and diamond were used as carriers of melittin to breast cancer cells. To date, the effects of carbon nanoparticles as carriers of melittin on cancer cells have not been studied. The present study was carried out on MCF-7 and MDA-MB-231 cell lines. The investigation consisted of structural analysis of complexes using transmission electron microscopy, zeta potential measurements, evaluation of cell morphology, assessment of cell viability and membrane integrity, investigation of reactive oxygen species production, and investigation of mitochondrial membrane potential. Cell death was examined by flow cytometry and a membrane test for 43 apoptotic proteins. The results indicate that melittin complex with nanographene oxide has a stronger toxic effect on breast cancer cells than melittin alone. Moreover, nanodiamonds can protect cells against the lytic effects of melittin. All complexes reduced, but not completely eliminated the level of necrosis, compared to melittin. Thus, results suggest that the use of carbon nanoparticles as carriers for melittin may find use in medicine in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...